A Hybrid Approach to Email Spam Detection-Random Forest and Sentiment Analysis

Shuyan Liu sl10158@nyu.edu

Eleftheria Pissadaki, PhD

ep3041@nyu.edu

Thomas M. Schmidt, D. Sc. tms493@nyu.edu

Birthday 10 DM 1

Agenda

- Spam Detection
- Types of Errors
- Pattern Recognition
- Classifiers
- Sentiment Analysis
- Building the model
- Results
- Future Directions

The Spam Problem

Where Spam Comes From

Countries from which the most spam mails originated in 2018

The Spam Problem

Rate of Spam Mails is Dropping

Share of spam mails as percentage of total e-mail traffic

Proof of Identity

Email Spam Detection

Email Spam Detection: ML problem

PGP HOW TO USE PGP TO VERIFY THAT AN EMAIL IS AUTHENTIC: LOOK FOR THIS -TEXT AT THE TOP. TINDO runna 2 -0-@ MA REPLY 0 Hadrad Marahade w Pt 4.44 /m II ----- BEGIN PGP SIGNED MESSAGE----HASH: SHA256 HEY, EIDET OF OUL TELONIKE THE THENK CAPE OF IF IT'S THERE, THE EMAIL IS PROBABLY FINE.

Type 1 and Type 2 Errors

	Null Hypothesis is TRUE	Null Hypothesis is FALSE
Reject null	Type I Error	Correct Outcome!
hypothesis	(False positive)	(True positive)
Fail to reject null	Correct Outcornel	Type II Error
hypothesis	(True negative)	(False negative)

Type 1 and Type 2 ErrorsType 1 Error & Type 2 Error

Type 1 and Type 2 Errors, Spam Detection

	Null Hypothesis (H ₀)		
Machine Learning Classifier	Actual Spam Email	Actual Not-Spam Email 32 (False Negative) TYPE II ERROR	
Predicted Spam (Action: Delete)	222 (True Negative)		
Predicted Not-Spam (Action: Keep)	22 (False Positive) TYPE I ERROR	39 (True Positive)	
Sum	244	71	

Is the Pattern Clearer now?

Naïve classification?

$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$

Titanic Decision Tree

Email Spam Detection: ML problem

Random Forest as ML?

Sentiment Analysis

Sentiment Analyzer

Fig. 1. Model Build Flow Chart

Throw that all into our ML Blender

Classification Results for Proposed Models

TABLE I CLASSFICATION RESULT FOR PROPOSED MODELS

Model	FP-Rate	FN-Rate	Accuracy	Precision	Recall
NB	26.25%	38.91%	66.67%	68.10%	66.67%
RF	15.23%	10.67%	87.32%	87.31%	87.32%
NB-SA	23.55%	21.24%	77.80%	78.10%	77.80%
RF-SA	7.59%	3.69%	94.54%	94.56%	94.54%

Classification Results for Proposed Models

TABLE I CLASSFICATION RESULT FOR PROPOSED MODELS

Model	FP-Rate	FN-Rate	Accuracy	Precision	Recall
NB	26.25%	38.91%	66.67%	68.10%	66.67%
RF	15.23%	10.67%	87.32%	87.31%	87.32%
NB-SA	23.55%	21.24%	77.80%	78.10%	77.80%
RF-SA	7.59%	3.69%	94.54%	94.56%	94.54%

Classification Results for Proposed Models

TABLE I CLASSFICATION RESULT FOR PROPOSED MODELS

Model	FP-Rate	FN-Rate	Accuracy	Precision	Recall
NB	26.25%	38.91%	66.67%	68.10%	66.67%
RF	15.23%	10.67%	87.32%	87.31%	87.32%
NB-SA	23.55%	21.24%	77.80%	78.10%	77.80%
RF-SA	7.59%	3.69%	94.54%	94.56%	94.54%

ROC Curves for NB-SA and RF-SA Models

Receiver Operating Characteristic 1.0 0.8 True Positive Rate 0.6 0.4 0.2 ROC curve NB-SA (area = 0.81) ROC curve RF-SA (area = 0.98) 0.0 0.2 0.4 0.8 0.6 0.0 1.0 False Positive Rate

Future Directions

Future Directions

Thanks To

Chinese American Scholars Association

Questions