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The Spam Problem
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The Spam Problem

Spam Costs Businesses $20.5 Billlon Anrusdly
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Proof of Identit:




Email Spam Detection




Email Spam Detection: ML problem
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Type 1 and Type 2 Errors
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Type 1 and Type 2 Errors
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Type 1 and Type 2 Errors, Spam
Detection

“ull Hy pothesis (Hy)

Machme Learmme CClassifier Actual Spam Email

Actual Not-Spam Fmail
Predicted Spam

. 32 (False Negatne)
(Action: Delete) 222 (True Negatre) TYPE Il ERROR
Predicted Not-Spam 22 (Fake Postive) 39 (Troe Positive)
(Action: Keep) TYPE | ERROR '
S 244

o I
]
L]




attern Recognition
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Is the Pattern Clearer now?
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Naive classification




Naive Bayes
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Titanic Decision Tree

Survival of passengers on the Titanic




Email Spam Detection: ML problem

<] B2 Spam
e eleclion




Random Forest as ML?
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Sentiment Analysis

Sentiment Analysis




Sentiment Analyzer
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Model Build Flow Chart
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Throw that all into our ML Blender




Classification Results for Proposed
Models

TABLE 1
CLASSFICATION RESULT FOR PROPOSED MODELS

Model FP-li{_;}IE FN-Rate | Accuracy | Precision Recall
NB 26.25%) 38.91% 66.67% 68.10% 66.67%
RF 15.23% 10.67% 87.32% 87.31% 87.32%

NB-SA 23.55% | 21.24% 77.80% 78.10% 77.80%

RF-SA 71.59% 3.69% 94.54% 94.56% 94.54%
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ROC Curves for NB-SA and RF-SA
Models

Receiver Operating Characteristic
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Future Directions
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Questions




