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    Abstract 

The theory of copulas is known to provide a useful tool for modelling dependence in integrated risk 
management. In this paper, we describe how may be used copula methodology for the Monte Carlo Analysis 
whereas the main emphasis is put on Value-at-Risk as a risk measure. In the second part of this paper we show 
properties more generalised model as measurable space and we show how it is possible to introduce the relevant 
notions as for example the joint distribution.  
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1 Introduction 

Capital allocation within a bank is getting more and more important as the regulatory requirements are 
moving towards economic-based measures of risk (see the reports [1] and [2]). Banks are urged to build sound 
internal measures of credit and market risks for all their activities (and certainly for operational risk in a near 
future). Internal models for credit, market and operational risks are fundamental for bank capital allocation in a 
bottom-up approach. Internal models generally face an important problem, which is the modelling of joint 
distributions of different risks. 

These two difficulties (Gaussian and joint distribution modelling) can be treated as a problem of copulas. A 
copula is a function that links univariate marginals to their multivariate distribution. Before 1999, copulas have 
not been used in finance. There have been recently some interesting papers on this subject (see for example the 
article of Embrechts, McNeil and Straumann [1999]). Moreover, copulas are more often cited in the financial 
literature. Li [1999] studies the problem on default correlation in credit risk models, and shows that “the current 
CreditMetrics approach to default correlation through asset correlation is equivalent to using a normal copula 
function”. In the Risk special report of November 1999 on Operational Risk, Ceske and Hernández[1999] 
explain that copulas may be used in conjunction with Monte Carlo methods to aggregate correlated losses. 

The aim of this paper is to show how may be used copula methodology for the Monte Carlo Analysis 
whereas the main emphasis is put on Value-at-Risk as a risk measure. The paper is organized as follows. In 
section two, we present copula function and some related fields. In  the section three we consider the problem of 
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Monte Carlo simulating analysis and explain that copulas may be used in conjunction with Monte Carlo 
methods to aggregate correlated losses. In the last section four we introduce more general model for random 
events as Boolean  algebra and we discus about the basic properties of such model. 
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2.  Copulas approaches 

The problem of risk measuring for a financial asset portfolio may be divided into two main stages: 
- modelling the joint evolution of risk factor2 returns affecting portfolio’s profit and loss distribution 

over a specified holding period3;  
- modelling the impact of risk factor return changes on the value of assets4 in portfolio by using adequate 

pricing models. 
In this work, the focus is on the first stage of the problem. We describe (in a practical way) how to simulate 

the risk factors from a multivariate distribution. In order to achieve this purpose, it is necessary to know the 
dependence structure of risk factor returns. Let X=(X1, ..., Xn) be the random vector of the n risk factor log-
returns which affect portfolio value, with marginal cumulative distribution functions (C.D.F.) F1, ..., Fn. The 
multivariate C.D.F., [ ],,,),,( 111 nnn xXxXPxxF ≤≤= KK  completely determines the dependence structure 
of random returns X1, ..., Xn. However, its analytic representation is often too complex, making practically 
impossible its estimation and consequently its use in simulation models. The most common methodologies for 
measuring portfolio risk use the multivariate conditional Gaussian distribution to simulate risk factor returns due 
to its easy implementation. Unfortunately, empirical evidence underlines its inadequacy in fitting real data. The 
use of copula function allows us to overcome the issue of estimating the multivariate C.D.F. by splitting it into 
two parts: 

- determine the margins F1, ..., Fn, representing the distribution of each risk factor; estimate their 
parameters fitting the available data by soundness statistical methods5; 

- determine the dependence structure of the random variables X1, ..., Xn, specifying a meaningful copula 
function. 

The main goal is to choose the margins and the copula better performing the portfolio Value-at-Risk (VaR) 
measurement.  

2.1 Some definitions and properties 

Definition 1: An n-dimensional copula6 is a multivariate C.D.F., C, with uniformly distributed margins on [0,1] 
(U(0,1)) and the following properties: 

1. C: [0,1]n → [0,1]; 
2. C is grounded and n-increasing7; 
3. C has margins Ci which satisfy Ci(u) = C(1, ..., 1, u, 1, ..., 1) = u for all u∈  [0,1]. 

It is obvious, from the above definition, that if F1, ..., Fn are univariate distribution 
functions, ))(,),(( 11 nn xFxFC K  is a multivariate C.D.F. with margins F1, ..., Fn, since )( iii XFU = , i = 1,...,n, 
is a uniform random variable. Copula functions are a useful tool to construct and simulate multivariate 
distributions. 

The following theorem is known as Sklar’s Theorem. It is the most important theorem regarding to copula 
functions since it is used in many practical applications. 

Theorem8: Let F be an n-dimensional C.D.F. with continuous margins F1, ..., Fn. Then F has the following 
unique copula representation (canonical decomposition): 

 ),,( 1 nxxF K  = ))(,),(( 11 nn xFxFC K  ( 2.1.1) 

                                                 
2 e.g. , exchange rates, interest rates, stock indexes, commodity prices, and risk factors affecting the credit state 
of the counterparty. 
3 Usually it ranges from one day to two weeks for market risk management, while it is one year for credit risk 
management. 
4 Such as options, swaps, bonds, equities, etc. 
5 e.g., Generalized Method of Moments (GMM), Maximum Likelihood Estimation (MLE)., etc. 
6 The original definition is given by Sklar (1959). 
7 These properties mean that C is a positive probability measure. 
8 For the proof, see Sklar (1996). 



The theorem of Sklar [1959] is very important, because it provides a way to analyse the dependence 
structure of multivariate distributions without studying marginals distributions. From Sklar’s theorem we see 
that, for continuous multivariate distribution functions, the univariate margins and the multivariate dependence  
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structure can be separated. The dependence structure can be represented by an adequate copula function. 
Moreover, the following corollary is attained from (2.1.1). 

Corollary: Let F be an n-dimensional C.D.F. with continuous margins F1, ..., Fn and copula C (satisfying 
(2.1.1)). Then, for any u=(u1,…,un) in [0,1]n: 

 ))(,),((),,( 1
1

1
11 nnn uFuFFuuC −−= KK  ( 2.1.2) 

where 1−
iF  is the generalized inverse of Fi. 

To illustrate the idea behind the copula function, we can think about the multivariate Gaussian that is a 
“standard” assumption in risk management.  
Corollary: The Gaussian (or normal) copula is the copula of the multivariate normal distribution. In fact, the 
random vector X=(X1,…,Xn) is multivariate normal iff: 

1) the univariate margins F1, ..., Fn are Gaussians; 
2) the dependence structure among the margins is described by a unique copula function C (the normal 

copula) such that9: 

 ))(,),((),,( 1
1

1
1 nRn

Ga
R uuuuC −−Φ= φφ KK  ( 2.1.3) 

where RΦ  is the standard multivariate normal C.D.F. with linear correlation matrix R and φ−1 is the inverse of 
the standard univariate Gaussian C.D.F. 

It appears that the risk can be splitted into two parts: the individual risks and the dependence structure 
between them. Indeed, the assumption of normality for the margins can be removed and F1, ..., Fn may be fat-
tailed distributions (e.g. Student, Weibull, Pareto) and dependence may still be characterized by a Normal 
copula. This separability property is not (just!) a piece of obtuse statistical theory, but has profound and far-
reaching practical implications. These include the following: 

- Copulas provide greater flexibility in that they allow us to fit any marginals we like to different random 
variables, and these distributions might differ from one variable to another. We might fit a normal 
distribution to one variable and another distribution to the second, and then fit any copula we like 
across the marginals. In contrast, traditional representations of multivariate distributions require that all 
random variables have the same marginals: so if we fit a multivariate normal across a set of random 
variables, we are forced to fit univariate normalise to each of the marginals. It is obvious that this 
straightjacket is often extremely unsatisfactory (e.g., when aggregating across different risks), and 
copulas enable us to escape from it.  

- Copulas also provide greater flexibility in that they allow us a much wider range of possible 
dependence structures. Imagine we have a set of marginals of a given type (e.g., normal). The 
traditional representation only allows us one possible type of dependence structure, a multivariate 
version of the corresponding univariate distribution (e.g., a multivariate normal, if our marginals are 
normal). However, copulas still allow us the same dependence structure if we wish to apply it (i.e., 
through a Gaussian copula), but also allow us a great range of additional dependence structures (e.g., 
through Archimedean copulas).  

These advantages (and others besides) imply that copulas provide a superior approach to the modelling of 
multivariate statistical problems10.  

3 VaR and Monte Carlo simulating analysis  

                                                 
9 As one can easily deduce from equation (2.1.2). 
10 http://www.fenews.com/embrechts  



Due to its simplicity, but also because of regulatory reasons, Value-at Risk (VaR) remains one of the most 
popular risk measures. The emergence of Value-at-Risk (VaR) is dated away from the early nineties and its 
various generalisations and refinements more recently. Value-at-Risk (VaR) calculations are usually based on a 
Monte Carlo simulation. In this paper, we show how may be used copula methodology for the Monte Carlo 
Analysis. 
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The basis concept behind the Monte Carlo approach is to simulate repeatedly a random process for the financial 
variable of interest, covering a wide range of possible situations. These variables are drawn from specified 
probability distributions that are assumed known. Thus simulations recreate the entire distribution of portfolio 
values and a distribution of portfolio values is obtained. Ordering the changes in portfolio value from worst to 
best, the 99% VaR, for example, is computed as the loss such that 1% of the profits or losses are bellow it, and 
99% are above it. 

The key to a meaningful implementation of Monte Carlo simulation is making reliable judgements about 
which statistical distribution is appropriate for which risk factors and estimating the parameters of the selected 
distributions. In practice, a wide array of distributions can be used for different risk factors. Some of the 
commonly used distributions are the normal, the lognormal, GARCH, and so on. An important issue is the 
specification of a modelling structure that meaningfully takes into account the interrelationships between 
different risk factors, for example, interest rates, exchange rates and so on. This multivariate simulation process 
captures and maintains the dependence structure of the risk factors modelled separately. To accomplish this, the 
simulation engine uses a framework based on the statistical concept of a copula. A copula is a function that 
combines marginal distributions of the variables (risk factors) into a specific multivariate distribution in which 
all of its one-dimensional marginals are the cumulative distribution functions (CDFs) of the risk factors (see 
section 2 of this paper). 

Be aware that a Monte Carlo Analysis consisting of two independent simulations based only on the 
individual marginal distributions of the risk factors will ignore the correlation between the two risk factors and 
potentially provides misleading simulation results. In extreme cases, a Monte Carlo Analysis that ignores the 
correlation between risk factors can simulate impossible market states. 

In this paper we describe how the copula methodology may be used in Monte Carlo Analysis. Our Monte 
Carlo Analysis contains for example risk factors interest rate and exchange rates, and their respective simulation 
models.  

Models fitted for use in Monte Carlo simulation can be univariate equations or multivariate systems. For 
example, an exchange rate model might be univariate, but yield curve models are often multivariate. A typical 
equations are: 

 iiyxifiy εθ += ),,( , (3.1) 

where i = 1,2, …,Nen. Nen is the number of endogenous variables, y is a vector of the endogenous variables, x is 
a vector of the exogenous variables, θ  are the estimated parameters, and ε are the residual errors. The residual 
have a user-specified distribution function (.)iF ( )(~ iiFi χε ). Alternatively, equations can also be written in 

the general form: 

 ii xyg εθ =),,(  (3.2) 

The modelling subsystem makes it possible for the user to estimate from the data the parameter vectors 
i

θ  and 

i
χ  for the equations (3.2) in each model. 

Modelling a system of variables accurately is a difficult task. The underlying, ideal, distributional 
assumptions for each variable are usually different from each other. An individual variable may be best 
modelled as a t-distribution or as a Poisson process. The correlation of the various variables is very important to 
estimate as well. A joint estimation of a set of variables would make it possible to estimate a correlation 
structure but would restrict the modelling to single, simple multivariate distribution (for example, the normal). 
Even with a simple multivariate distribution, the joint estimation would be computationally difficult and would 
have to deal with issues of missing data.  

They are known a variety of estimation methods including the Generalized Method of Moments (GMM) 
and Maximum Likelihood Estimation (MLE) for selecting a appropriate models to fitting risk factors. Various 
diagnostics and goodness of fit measures are also known, to enable the user to iteratively refine the model 



specification. When an appropriately fitted model is available, that model can be later use in Monte Carlo 
simulation.  

SAS® Risk Dimensions has a unique capability to meaningfully integrate into a single joint distribution, the 
marginals distributions that have been estimated in separate models, many of which might have very different 
distributional assumptions. The statistical construct of a copula is used for this purpose. 
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After the fitted models that will be used are identified, the measures of dependence that define the chosen 

copula C(.) are estimated at the beginning of the simulation process. The estimate of the joint distribution H(.) 
for the error vector can then be constructed as: )(εF  = ))(,),(( 1

1
1

1 nn
FFC εε −− K . 

This fixes the distribution for y, the endogenous variables, because the parameters of the model equations have 
already been estimated, and the equations can be used to solve for y. Note that this solution process is a joint 
equation solution that naturally accounts for interdependencies, such as the appearance of some y's (endogenous 
variables) in the model equations for other y's. 

Any given joint distribution function has an associated copula that is induced by it by construction. In the 
case of the copula induced by the multivariate normal, the simulation scheme reduces to the following steps: 

1. A correlation matrix R is estimated from the estimated model residuals that have been made “normal” 
using the C.D.F.s, Fi (.), along with the inverse standard normal C.D.F., (.)1−Φ , which uses the 
relationship ))((1

itiF ε−Φ . 
2. Using a random-number generating method that is chosen by the user from the available alternatives, 

independent N(0,1) variables are generated and transformed to a correlated set by using R. They are 
then transformed back to the uniform by using (.)1−Φ . Now we have a set of non-independent 
uniforms, ui, that are dependent through the copula. 

3. These ui can be transformed into a set of draws from the joint distribution by using )(1
iii uF −=ε . Using 

the model equations, the endogenous variable values for that time step for that simulation draw can 
then be computed.  

When the copula is induced by the normal distribution, the key measure of dependence is the correlation matrix 
R, which is described above. Risk Dimensions is capable of factoring in the uncertainty in the estimation of the 
correlation matrix, by using a Wishart distribution that is centered around the estimated R to randomize the 
actual correlation matrix that is used in each simulation draw. 

Monte Carlo simulations are based on random draws ε from a variable with the desired probability 
distribution. The numerical analysis usually proceeds in two steps. 
 The first building block for a random number generator is a uniform distribution over the interval [0,1], 
which produces a random variable X. 
 The next step is to transform the uniform random number X into the desired distribution through the 
inverse cumulative probability distribution function (PDF). Take the normal distribution. 

4  Non commutative joint distributions 

The base model for theory of copulas is in the classical probability space ),,( PSΩ ,  where ),( SΩ  is a 

measurable space and P is a probability measure (σ -additive function from ]1,0[→S )Let 21,ξξ  be some 

random variables on ),,( PSΩ . Then for the joint distribution ),(),( 22112112 ttPttF <<= ξξ  is valid   

),(),(),( 122122112112 ttFttPttF =<<= ξξ , for each Rtt ∈21, . It is well known fact, that in this case we 
cannot study for example causality models.  It means, that it is impossible describe the following situation: 
result of the random variable 1ξ  dependence on the random variable 2ξ  but the random variable 2ξ  does not 

dependent on the variable 1ξ . It is the same as ),(),( 12212112 ttFttF ≠ . Such situation is possible to describe 
by using quantum probability models. 

In 1933 von Neumann has suggested the other model (von Neumann algebra). In these days they are studied 
several algebraic structures, which can be use for describing non-compatible random event. This problem has 



been studied by several authors [1]-[8],[10]-[23].  For example, on an orthomodular lattice (an OML) L  we can 
study causality. An OML has the following property 

)()( ⊥∧∨∧= babaa  iff L  is Bolean algebra. 

Indeed )()( ⊥∧∨∧≥ babaa  for Lba ∈, .  
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 In the following part of this paper we try to explain, how is possible to define a  joint distribution on an 
OML. And we introduce  an example of such function, too.  

Definition 4.1. [19] Let L  be a nonempty set endowed with a partial ordering ≤ . Let there exists the 
greatest element 1  and the smallest element 0 . Let there be the lattice binary operations ∨ , ∧  and the unary 
operation   LL →⊥:  defined as follows. 

i.  If Lba ∈, , then Lbaba ∈∧∨ , . 

ii. For any La∈  aa =⊥⊥ )(  a 1=∨ ⊥aa . 

iii.  If Lba ∈,  such that ba ≤ , then ⊥⊥ ≤ ab  and )( baab ∧∨= ⊥   
Then  ),,,1,0,( ⊥∧∨L  is said to be an orthomodular lattice  (briefly an OML). 

Let L  an OML. Elements Lba ∈,  will be called orthogonal ( ba ⊥ ) if ⊥≤ ba  and they will be called 

compatible ( ba ↔ )  if )()( ⊥∧∨∧= babaa  

Definition 4.2. A map ]1,0[:: LLm × , such that 0)0( =m , 1)1( =m  and 
)()()( bmambam +=∨  if ba ⊥ , is called a state on L .} 

Definition 4.3. [15] Let L  be an OML. The map ]1,0[: →× LLp  will be called an s-map if the 
following conditions hold: 

(s1) 1)1,1( =p ; 
(s2) if ba ⊥ , then 0),( =bap ; 
(s3)   if ba ⊥ , then for any Lc∈  

),(),(),( cbpcapcbap +=∨  
),(),(),( bcpacpbacp +=∨  

We say that a s-map p is non-commuting, if there exist Lba ∈, , such that ),(),( abpbap ≠ . If for 
each Lba ∈,  ),(),( abpbap = , then  we say that p  is commuting. We can see that  the s-map has the 
similarly properties as a probability of intersection for two random events  in the classical probability space. It 
has only one different property:  an s-map can be non-commuting. But for compatible elements, we have the 
same situation, as in the classical theory. This has been studied  in the following papers  [12]-[17]. In this case it 
is possible to find for a non-commuting s-map such elements Lba ∈, , for that 

),().,(),( bbpaapbap =  
),().,(),( bbpaapabp ≠ . 

We will write ba p≈  and ab p≈/ . Moreover a map ),()( aapa =ν  is a state on L . 

Let )(RB  be a σ -algebra of Borel sets. A homomorphism LRBx →)(:  is called an observable on L  
(analogical notion to a random variable).  If x  is an observable, then )}();({)( RBEExxR ∈=  is called a 
range of the observable x . It is clear that )(xR  is a Boolean algebra [23]. A spectrum of an observable x  is 
defined by the following way: }1)();({)( =∈= ExRBEx Iσ .  



We say that x  and y  are compatible ( yx ↔ ) if there exists a Boolean sub-algebra  LB ⊂  such that 
ByRxR ⊂)()( U . In other words yx ↔  if for any )(,. RBFE ∈ , )()( FyEx ↔  

We call an observable x  a finite if )(xσ  is a finite set. Let us denote ℑ  the set of all finite observables 
on L . 

Let ℑ∈yx, . Then a map ]1,0[)()(:, →× RBRBp yx , such that 
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))(),((),(, FyExpFEp yx = , 
is called a joint distribution for the observables yx, . Let us denote 

∑ ∑
∈ ∈

=
)( )(

))(),((),(
xx yy

jiji
i j

yyxxpyxyxp
σ σ

. 

Then 

∑∑
∈∈

==
)(

2

)(

2 ))(())(),((),(
xx

ii
xx

iii
ii

xxxxxxxpxxxp
σσ

ν  

From analogy with  the classical theory of probability we can define notions for example as covariance ( (.,.)c ) 
and  correlation coefficient ( (.,.)r  by the following way: 

)()(),(),( yxyxpyxc νν−=  

),(),(
),(),(

yycxxc
yxcyxr =  

In spite of the classical theory of probability in this case ),( yxc  is not equal to ),( xyc  in general. 

Proposition 4.2. [16] Let L  be an OML, let p  be an s-map on L .  For each ℑ∈yx,  there exist probability 

spaces ),,( iii PSΩ , ( 2,1=i ), and random variables ii ξη , , which are iS -measurable such that: 

a) )()( xEx i νη =  and )()( yEx i νξ = , ( 2,1=i ), where )(ςEx  is expectation of random variable 
ς  ; 

b) ),cov(),( 11 ξη=yxc  and ),cov(),( 22 ηξ=xyc ; 

c) ),(),(),( yycxxcyxc ≤ ; 

d)  ]1,1[),( −∈yxr ; 
if yx ↔ , then ),(),( xycyxc = . 

From the previous it follows that a non-commuting covariance is dependent only on a non-commuting s-
map. Let ),,( PSΩ  be a classical probability space and ξη,  be some random variables on it. From the 
classical theory of probability we know, that the set of all random variables is a linear space, the covariance 

),cov( ξη  is the inner product and the standard deviation. From it follows that the correlation coefficient 

)cos(),( Pβξηρ =  

where Pβ  is „the  angle“ between the random variables ξη,  in this geometry. 

Example 4.3. Let },,,,,1,0{ ⊥⊥⊥= ccbbaaL . In this case L  is the prime sum of three Boolean algebras, 
where cba ,,  are atoms.  In the following table we can see s-map ),( vup , where u is in rows and v  is in 
columns. 

),( vup  a  ⊥a  b  ⊥b  c  ⊥c  
a  0.2 0 0.06 0.14 0.08 0.12 
⊥a  0 0.8 0.24 0.56 0.32 0.48 



b  0.1 0.2 0.3 0 0.21 1.28 
⊥b  0.1 0.6 0 0.7 0.18 0.42 

C 0.1 0.3 0.2 0.2 0.4 0 
⊥c  0.1 0.5 0.1 0.5 0 0.6 

 
It is easy to see, that ),( vup  is s-map.  Moreover 
         E-Leader, Slovakia 2006 
 
  

),(),(),( bbpaapbap = ,   ),(),(),( ccpaapcap = ,  ),(),(),( ccpbbpcbp =  
and  

),(),(),( aapbbpabp ≠ ,   ),(),(),( aapccpacp ≠ ,   ),(),(),( bbpccpbcp ≠ . 

Let us denote },,1,0{ ⊥= uuBu  . uB  is a Boolean sub-algebra of L . This system L  of Boolean algebras 

uB  ( 1,0≠u ) is causal system endowed with the s-map p  or with the conditional state f . We can imagine 
influence among these Boolean algebras as follows 

bpa BB ≈ ,    cpa BB ≈ ,    cpb BB ≈  

apb BB ≈/ ,   apc BB ≈/ ,   bpc BB ≈/ . 

On the other hand, if we put ),(),(),( 11 bapbapabp == ,…, then 1p  is the commuting s-map. And 
so, there is not causality between Boolean algebras. 

Conclusion. 

If we compare the last part with the previous, we could see, that it is possible to study together also causality 
data. On the other hand it could be a danger to use some statistical methods without knowledge about role of the 
time in using database.  It will be interesting to compare for example Granger causality with this approach.  
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