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IntroductionIntroduction

The regulatory requirements (BASEL II) cause 
the necessity to build sound internal models for 
credit, market and operational risks.

It is inevitable to solve an important problem: 

“How to model a joint distribution of different 
risk?”
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ProblemProblem

Consider a portfolio of n risks: X1,…,Xn .
Suppose, that we want to examine the 
distribution of some function f(X1,…,Xn) 
representing the risk of the future value of a 
contract written on the portfolio.
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ApproachesApproaches

A. Correlation
B. Copulas
C. s-maps
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A. CorrelationA. Correlation
Estimate marginal distributions F1,…,Fn. 
(They completely determines the 
dependence structure of risk factors)
Estimate pair wise linear correlations 
ρ(Xi , Xj) for i,j ∈ {1,…,n} with i≠ j
Use this information in some Monte Carlo 
simulation procedure to generate dependent 
data
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Common approachCommon approach

Common methodologies for measuring 
portfolio risk use the multivariate 

conditional Gaussian distribution to 
simulate risk factor returns due to its easy 

implementation.

Empirical evidence underlines its inadequacy 
in fitting real data.
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B. Copula approachB. Copula approach

Determine the margins F1,…,Fn, 
representing the distribution of each risk 
factor, estimate their parameters fitting the 
available data by soundness statistical 
methods (e.g. GMM, MLE)
Determine the dependence structure of the 
random variables X1,…,Xn , specifying a 
meaningful copula function
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Copula ideas provideCopula ideas provide

a better understanding of dependence,
a basis for flexible techniques for simula-
ting dependent random vectors,
scale-invariant measures of association 
similar to but less problematic than linear 
correlation,
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Copula ideas provideCopula ideas provide

a  basis for constructing multivariate distri-
butions fitting the observed data 
a way to study the effect of different depen-
dence structures for functions of dependent 
random variables, e.g. upper and lower 
bounds.
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Definition 1: An n-dimensional copula is a 
multivariate C.D.F. C, with uniformly 
distributed margins on [0,1] (U(0,1)) and it 
has the following properties:

1. C: [0,1]n → [0,1];
2. C is grounded and n-increasing;
3. C has margins Ci which satisfy

Ci(u) = C(1, ..., 1, u, 1, ..., 1) = u
for all u∈[0,1].
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SklarSklar’’ss TheoremTheorem

Theorem: Let F be an n-dimensional C.D.F. 
with continuous margins F1, ..., Fn. Then F
has the following unique copula 
representation:
F(x1,…,xn)=C(F1(x1),…,Fn(xn)) (2.1.1)
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Corollary: Let F be an n-dimensional C.D.F. 
with continuous margins F1, ..., Fn and 
copula C (satisfying (2.1.1)). 
Then, for any u=(u1,…,un) in [0,1]n:
C(u1,…,un) = F(F1

-1(u1),…,Fn
-1(un))

(2.1.2)
Where Fi

-1 is the generalized inverse of Fi.
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Corollary: The Gaussian copula is the copula of the 
multivariate normal distribution. In fact, the random 
vector X=(X1,…,Xn) is multivariate normal iff:

1) the univariate margins F1, ...,Fn are Gaussians;
2) the dependence structure among the margins is 

described by a unique copula function C (the normal 
copula) such that:
CR

Ga(u1,…,un)=ΦR (φ 1
-1(u1),…, φn

-1(un)),  (2.1.3)
where ΦR is the standard multivariate normal C.D.F. 
with linear correlation matrix R and φ −1 is the inverse 
of the standard univariate Gaussian C.D.F.
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1. Traditional versus Copula1. Traditional versus Copula
representation representation 

Traditional representations of multivariate 
distributions require that all random variab-
les have the same marginals
Copula representations of multivariate dis-
tributions allow us to fit any marginals we 
like to different random variables, and these 
distributions might differ from one variable 
to another
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2. Traditional versus Copula2. Traditional versus Copula
representationrepresentation

The traditional representation allows us 
only one possible type of dependence 
structure
Copula representation provides greater 
flexibility in that it allows us a much wider 
range of possible dependence structures.
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SoftwareSoftware

•Risk Metrics system uses the traditional 
approache 

•SAS Risk Dimension software use the Copula 
approache 
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C. sC. s--map map 
An orthomodular lattice 
(OML)

are called 
orthogonal 

are called 
compatible 
a state  m:L → [0,1]

1. m(1L) =1;
2. m is additive

Lab ∈,

) , , ,0 ,1 , ,( ⊥∧∨≤
LL

L
⊥≤ ba

Lab ∈, )()( ⊥∧∨∧≥ babaa

)()( ⊥∧∨∧= babaaBoolean algebra
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SS--map and conditional statemap and conditional state
on an OML on an OML 

S-map: map from 
p: Ln→ [0,1]

1. additive in each 
coordinate;

2. if there exist 
orthogonal elements, 
then = 0;

Conditional state
f: LxL0 → [0,1]

1. additive in the first 
coordinate;

2. Theorem of full  
probability
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NonNon--commutative scommutative s--mapmap

),(),( abpbap ≠

),(),(
)()(

abpbap
babaa

=
∧∨∧= ⊥
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